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Abstract The inverse Langevin function is an integral com-
ponent to network models of rubber elasticity with networks
assembled using non-Gaussian descriptions of chain statis-
tics. The non-invertibility of the inverse Langevin often
requires the implementation of approximations. A variety
of approximant forms have been proposed, including series,
rational, and trigonometric divided domain functions. In
this work, we develop an error-minimizing framework for
determining inverse Langevin approximants. This method
can be generalized to approximants of arbitrary form, and
the approximants produced through the proposed frame-
work represent the error-minimized forms of the particular
base function. We applied the error-minimizing approach
to Padé approximants, reducing the average and maximum
relative errors admitted by the forms of the approximants.
The error-minimization technique was extended to improve
standard Padé approximants by way of understanding the
error admitted by the specific approximant and using error-
correcting functions to minimize the residual relative error.
Tailored approximants can also be constructed by appreci-
ating the evaluation domain of the application implement-
ing the inverse Langevin function. Using a non-Gaussian,
eight-chain network model of rubber elasticity, we show
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how specifying locations of zero error and reducing the
minimization domain can shrink the associated error of
the approximant and eliminate numerical discontinuities in
stress calculations at small deformations.

Keywords Inverse Langevin function · Rubber elasticity ·
Statistical mechanics · Non-Gaussian chain statistics · Padé
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Introduction

Approximations are fundamental to solving real problems
in science and engineering. Often, the sheer complexity of
systems necessitates simplification, but there are also situ-
ations where no closed form solution exists. This is where
numerical approximations enter. Numerical techniques and
solutions are ubiquitous in problems of applied solid and
fluid mechanics, heat transfer, and control theory. While
approximations are convenient, and sometimes necessary,
not fully appreciating how approximations affect the solu-
tion can diminish their power. Network-based models of
rubber elasticity built from non-Gaussian statistical repre-
sentations of long chain molecules typically require deter-
mining the inverse Langevin of an argument. The Langevin
function is defined as follows

L (x) = coth (x) − 1

x
. (1)

While computing the Langevin is straightforward, there
exists no closed form expression for the inverse Langevin
function, L−1 (x). Since network models typically require
an explicit definition for the inverse Langevin function,
they naturally employ approximations. Nevertheless, net-
work models have had great success is describing the large
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strain and finitely extensible behavior of elastomeric materi-
als (Arruda and Boyce 1993; Boyce and Arruda 2000; Flory
and Erman 1982; Treloar 1975; Wang and Guth 1952; Wu
and Van der Giessen 1993), and recently, biological cellu-
lar and tissue structures (Bischoff et al. 2002a, b; Kang et
al. 2008; Kuhl et al. 2005; Ma and Arruda 2013; Ma et
al. 2010; Palmer and Boyce 2008). While network models
of nonlinear elasticity constructed with non-Gaussian statis-
tics have been impressive, their efficacy can be limited by
non-optimal inverse Langevin function approximations.

Macromolecular elastomers are principally composed
from randomly oriented, loosely cross-linked, long-chain
molecules with weak or sparse intra-molecular interactions.
A molecular chain contained in a representative volume ele-
ment of a network-based model can be modeled as N freely
rotating rigid Kuhn segments each of length l (Kuhn and
Grün 1942). A Freely Jointed Chain (FJC) has an end-to-end
distance vector of magnitude r . Assuming each chain link is
completely random and independent from all other links in
the chain, the probability density, p (r), of link angles, with
respect to r , is given by

ln (p (r)) = c − N

(
r

Nl
β + ln

(
β

sinh (β)

))
(2)

where c is a constant and β is defined as

β = L−1
( r

Nl

)
. (3)

It is important to note that at this point in the development
of non-Gaussian single chain behavior an approximation is
already being made. The probability density is derived using
the Stirling’s approximation to simplify expressions involv-
ing factorials; therefore, any constitutive model built with
non-Gaussian FJCs with link angle probability density func-
tions including the inverse Langevin has already introduced
error into the analysis (Kuhn and Grün 1942; Treloar 1975).

The force-extension relationship for a single FJC
is determined by differentiating the entropy function,
s = k ln (p (r)), yielding

f = −T
∂s

∂r
= kT

l
L−1

( r

Nl

)
(4)

where k is the Boltzmann constant and T is the absolute
temperature.

Three-dimensional networks of finitely extensible, non-
Gaussian chains with this force-extension relationship can
be arranged in a variety of configurations and aspect ratios
to describe macroscopic stress-strain behavior (Arruda and
Boyce 1993; Bischoff et al. 2002a, b; Boyce and Arruda
2000; Flory and Erman 1982; Kang et al. 2008; Kuhl et
al. 2005; Ma and Arruda 2013; Ma et al. 2010; Palmer
and Boyce 2008; Treloar 1975; Wang and Guth 1952; Wu
and Van der Giessen 1993). These network constitutive

models are dependent on the inverse Langevin function.
Numerically solving the inverse Langevin function can be
accomplished through a nonlinear root-finding problem.
This iterative problem is computationally costly to solve,
and as the scale of the problem increases, especially in
the context of finite element analyses, the complexity of
the constitutive law begins to dominate total solution time.
Approximants reduce the computational burden of comput-
ing the inverse Langevin function by substituting a straight-
forward function evaluation for the iterative root-finding
problem.

In this work, we examine approximate solutions to the
inverse Langevin function through an error-based approach
in an effort to construct approximants that are decid-
edly accurate without sacrificing computational fidelity.
This is accomplished by understanding how the general
form of a particular approximation behaves relative to the
exact inverse Langevin function and minimizing the rela-
tive error of the approximant over its entire domain. This
approach yields an error-minimized approximant of a par-
ticular form. Additionally, regardless of the form of the
approximant, due to the non-invertibility of the Langevin
function, residual error will exist. This error can be mini-
mized, increasing the quality of the approximant, through
correcting functions that modify the behavior of the original
approximation.

Examining the quality of a candidate approximant
through error-based techniques can also provide insight
into how the approximant affects constitutive stress-strain
behavior, potentially avoiding costly inconsistencies during
large strain analyses of complex deformations. The form
of the approximant may be modified such that it elimi-
nates small stretch stress discontinuities by construction.
This can be accomplished by stipulating zero approximant
error at particular locations in the domain x ∈ [0, 1] or by
understanding the evaluation domain necessary for a precise
application implementing the inverse Langevin function and
reducing the valid optimization domain within the proposed
error-minimization framework.

Inverse Langevin approximations

There has been considerable work, including many recent
efforts (Darabi and Itskov 2015; Itskov et al. 2009, 2012;
Jedynak 2015), in the development of simple and accu-
rate functions that behave similarly to the inverse Langevin
function (Cohen 1991; Kuhn and Grün 1942; Puso 1994;
Treloar 1975; Warner Jr 1972). Many of these approxi-
mations are constructed from Taylor series expansions or
Padé approximants; however, many forms exist (Bergström
1999).
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Taylor series approximants

Though no closed form of the inverse Langevin exists, it is
possible to construct high-order, finite series expansions to
approximate the behavior of the function. The Taylor series
is a powerful tool that can be used to determine a series
description of a function, and it is possible, through the
use of the Lagrange inversion formula, to find the Taylor
expansion of the inverse of a function. The use of a Tay-
lor series about the point x = 0 to approximate the inverse
Langevin function, L−1 (x), was first proposed by Kuhn
and Grün (1942). Using the first four nonzero terms of the
Taylor expansion, Kuhn and Grün proposed the following
approximation

L−1 (x) = 3x + 9

5
x3 + 297

175
x5 + 1539

875
x7 + O

(
x9

)
. (5)

The series was expanded in Itskov et al. (2009) to include
the first 20 nonzero terms yielding

L−1 (x) = 3x + 9

5
x3 + 297

175
x5 + 1539

875
x7 + 126117

67375
x9

+43733439

21896875
x11 + 231321177

109484375
x13

+20495009043

9306171875
x15 + 1073585186448381

476522530859375
x17

+4387445039583

1944989921875
x19 + O

(
x21

)
. (6)

Itskov et al. (2012), with computational efficiencies pro-
vided by Dargazany et al. (2013), developed a rapid and
numerically simple recursive algorithm for determining the
Taylor coefficients of the inverse of a series. Using the
inverse Langevin as a model, Itskov et al. (2012) extended
the Taylor series expansion of the inverse Langevin as

L−1 (x) = 3x + 9

5
x3 + 297

175
x5 + 1539

875
x7 + 126117

67375
x9 + · · ·

+519588001407316958447129785511020819131555326399179970047767492196701159

902903623205422824379381653441368510859764577156376354396343231201171875
x59 + O

(
x61

)
.

(7)

High-order Taylor series representations of the inverse
Langevin have the advantage of excellent agreement with
the exact inverse Langevin function around the point of
expansion; however, in the neighborhood of the singular
point at x = 1, Taylor expansions diverge significantly. This
is a fundamental limitation of the form of the series. Despite
this drawback, the 115 term series expansion has superior
accuracy compared to a selection of rational approxima-
tions (Cohen 1991; Puso 1994; Treloar 1975) in the region
x ∈ [0, 0.95] (Itskov et al. 2012)

Padé approximants

To combat the inability of Taylor series expansions to accu-
rately describe the behavior of the inverse Langevin function
near the singular point x = 1, rational functions have been
proposed as approximants. Fractions of polynomials have
the advantage of admitting asymptotic behavior within a
finite domain. Padé approximants—typically a particular
Padé approximation is denoted as an [m/n] approximant,
where m and n are the orders of the numerator and denomi-
nator polynomials, respectively—have had great success in
accurately describing the inverse Langevin function ∀x ∈
[0, 1], while simultaneously capturing the asymptotic char-
acter at the singular point. Two methods have been used
to construct Padé approximations of the inverse Langevin
function: single-point and multipoint Padé approximations.

A single-point Padé approximation is built from information
of the function and its derivatives at the point of expan-
sion. This information is readily available in an exact form
from the Taylor series expansion of the inverse Langevin.
The single-point approach has been an incredibly popular
technique for constructing inverse Langevin approximants,
including the rounded Treloar [1/6] approximation (1975)

L−1 (x) = 3x

1 − 0.6x2 − 0.2x4 − 0.2x6
, (8)

the rounded Warner [1/2] approximation (1972)

L−1 (x) = 3x

1 − x2
, (9)

the Cohen [3/2] approximation (1991)

L−1 (x) = x
3 − 36/35 x2

1 − 33/35 x2
, (10)

the rounded Cohen [3/2] approximation (1991)

L−1 (x) = x
3 − x2

1 − x2
, (11)

and the rounded Puso [1/3] approximation (2003)

L−1 (x) = 3x

1 − x3
. (12)

The extent of coefficient rounding and the form of the
proposed function differentiate these approximations. Each
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Fig. 1 Percent relative error of
Taylor series expansion and
single-point Padé
approximations of the inverse
Langevin function

approximation can be evaluated by determining its error
relative to the exact inverse Langevin function. Figure 1
compares the percent relative error of each of the single-
point Padé approximants, as well as the 115-term Taylor
series expansion proposed by Itskov et al. (2012) . It is
clear how the form of the approximation can have a pro-
found impact on the evolution of error within the domain
x ∈ [0, 1]; particularly, the approximations from Cohen
(1991) and Puso (1994) are able to capture the asymptotic
behavior of the inverse Langevin at the singular point.

In multipoint Padé approximations, sometimes called
rational interpolants or Newton-Padé approximants, the
coefficients of the approximant are found using information
about the function at a series of points within its domain
(see Holub (2003) for a complete discussion of the tech-
nique). By evaluating the Padé approximant at each of the
interpolation points, it is possible to construct a linear sys-
tem to determine the coefficient values—for uniqueness of
the approximant, typically, a normalizing condition is also
imposed. The accuracies of approximants produced by this
method are highly dependent on the selection of interpo-
lation points. Recently, multipoint Padé approximants have
been shown to have increased accuracy compared to tradi-
tional single-point Padé approximants (Darabi and Itskov
2015; Jedynak 2015). As with single-point Padé approxi-
mants, multipoint approximants can be differentiated by the
orders of polynomials used in their construction. The fol-
lowing approximants have been proposed for the inverse
Langevin function: the rounded Jedynak [3/2] approxima-
tion (2015)

L−1 (x) = x
3.0 − 2.6x + 0.7x

(1 − x) (1 + 0.1x)
, (13)

and the rounded Darabi [3/1] approximation (2015)

L−1 (x) = x
x2 − 3x + x

1 − x
. (14)

Figure 2 illustrates the ability of multipoint approximants
to reduce error compared to single-point approximants of
a similar form. Approximants proposed by Jedynak (2015)
and by Darabi and Itskov (2015) admit a maximum rela-
tive error of 1.514 and 2.639 %, respectively, compared to
the 4.937 % maximum relative error of the rounded Cohen
approximation (1991).

Recently, a mathematical scheme for determining
approximants has been proposed by Kröger (2015) that
accounts for the exact asymptotics, symmetry, and integral
behavior of the inverse Langevin by construction. While
approximants established by satisfying the requirements
detailed in Kröger (2015) are strictly admissible in the con-
text of function behavior, the approximants tend to admit
a larger maximum relative error compared to approximants
of similar constituent polynomial order. This error increase
can be attributed, in part, to the symmetry requirement,
which can be easily accounted for by using the domain
x ∈ [0, 1] in the construction of the approximant and numer-
ically satisfying the symmetry in the implementation of the
approximant by letting L−1 (x) = sign (x)L−1 (|x|), tak-
ing advantage of the odd behavior of the inverse Langevin
function.

Divided domain approximants

Non-Taylor and Padé approximants also exist for the inverse
Langevin function. Primarily, Bergström (1999) proposed
a piecewise defined approximant, with its domain divided
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Fig. 2 Percent relative error of
multipoint Padé approximates
compared to the rounded Cohen
[3/2] approximation

to more accurately describe the asymptotic behavior of the
inverse Langevin function. Bergström (1999) proposed a
dual interval approximant defined by

L−1 (x) =
{

1.31446 tan (1.58986x) + 0.91209x, |x| < 0.84136
1/ (sign (x) − x) , 0.84136 ≤ |x| < 1 .

(15)

The Bergström approximation and, more generally,
approximations of its type have a number of restrictions.
The main challenge in the implementation of the Bergström
approximant is the discontinuity as the function transitions
between its domains. Numerically, this discontinuity can be
problematic in the calculation of deformation distributions,
or in systems that require integration or differentiation of the
inverse Langevin function, such as in calculating the chain
free energy of rubber-like materials. Despite the limitations
of the Bergström approximation, the approximant is highly
accurate in describing the inverse Langevin function. In the
domain x ∈ [0, 1], the approximant has a maximum relative
error of 6.325 × 10−2 %.

Error-corrected approximations

Understanding the behavior of the error admitted by a par-
ticular approximant is as important as the form of the
original approximation. Every approximant of the inverse
Langevin function will result in residual error. By exam-
ining the form of the error function, it is possible to
supplement the original approximation with an error cor-
recting function to minimize the error produced by the
approximation.

Nguessong et al. (2014), using the Cohen approximation
as the base approximant for the inverse Langevin function

and a two-stage correction procedure proposed by Beda and
Chevalier (2003), showed the ability of a simply correct-
ing function to dramatically reduce the residual error of
the Cohen approximation. The Cohen approximation can be
written to include its error term as

L−1 (x) = x
3 − x2

1 − x2
+ O (x) (16)

where O (x) is the absolute error of the Cohen approxima-
tion. Graphically, it can be seen that O (x) takes the form

O (x) ≈ Axα . (17)

It is possible to determine the parameters A and α

that minimize the absolute error of the Cohen approxima-
tion through a variety of curve fitting techniques. Ngues-
song et al. (2014) again examined the error committed by
the approximation following the first-stage correction. The
approximant, following the first correction, has the form

L−1 (x) = x
3 − x2

1 − x2
+ Axα + O2 (x) (18)

where O2 (x) is the absolute error of the Cohen approx-
imation, including the correcting effect of the first-stage
improvement. The error function O2 (x) behaves like a
modulated polynomial with two roots, one located in the
domain x ∈ [0, 1] and the other at the singular point. Ngues-
song et al. (2014) proposed a second correcting function of
the form

O2 (x) ≈ Bxβ (x − γ ) (x − δ) . (19)

Requiring the zeros (γ and δ) of the correcting polynomial
to be coincident with the roots of the error function O2 (x),
the parameters B and β can be readily determined by mini-
mizing the difference between the proposed correction and
error functions. This combined procedure yields a two-
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Fig. 3 Percent relative error of
error-corrected Cohen
approximations and the
Bergström approximant with
respect to the inverse Langevin
function

step error-corrected approximation built from the Cohen
approximation (see Nguessong et al. (2014) for a detailed
discussion of the method) expressed by

L−1 (x) = x
3 − x2

1 − x2
− 1

2
x10/3 + 3x5 (x − 0.76) (x − 1) .

(20)

Once the form of the error-correcting functions have been
determined, it is possible to write a generalized form for
the Nguessong-type correction by combining the functions
presented in Eqs. 17 and 19. The Nguessong-type correction
approximation has the general form

L−1 (x) = x
3 − x2

1 − x2
+ Axα + Bxβ (x − γ ) (x − δ) . (21)

An improved correction function, as compared to the
two-step correction, can be determined by minimizing the
error committed by the general Nguessong-type correc-
tion approximation. Nguessong et al. (2014) found, while
holding the parameters γ and δ fixed in Eq. 21 from the two-
step procedure at 0.76 and 1, respectively, a least squares
minimization yielding the following approximation

L−1 (x) = x
3 − x2

1 − x2
− 0.488x3.243

+3.311x4.789 (x − 0.76) (x − 1) . (22)

Correcting functions can have a pronounced effect on the
maximum relative error admitted by a particular approxi-
mation. The two approximations (20) and (22) reduce the
relative error of the Cohen approximation from 4.937 % to
7.222 × 10−2 and 4.654 × 10−2 %, respectively. Figure 3
depicts the relative error admitted by the augmented Cohen
approximations, with the Bergström approximant, Eq. 15,
included for reference (note the discontinuity in Bergström
approximant as the function transitions between domains).

Approximations with corrections built from standard
functions produce new expressions that are straightfor-
wardly evaluated, integrated, and differentiated while dra-
matically reducing the relative error of the original approx-
imation.

An error-minimizing and error-correcting
framework for determining inverse Langevin
approximants

Minimized rational approximants

There has been substantial work in developing methods to
construct accurate and computationally efficient approxi-
mations of the inverse Langevin function. These approxi-
mants, built from Taylor series expansions, Padé approx-
imations, and divided domain composite functions, have
been successful and generally accepted by the community.
While accurate and largely robust, the real strength of these
approximations is not necessarily their complete descrip-
tion of the approximant but in their identification of possible
candidate forms for approximating the inverse Langevin
function.

Moreover, multipoint Padé approximations are highly
dependent on the interpolation points. Darabi and Itskov
(2015) and Jedynak (2015) showed that small changes in the
interpolation array can lead to spurious approximants, even
resulting in non-characteristic artifacts like poles and zeros
in the function domain x ∈ [0, 1].

An alternative approach described herein is to build
approximants from an error-minimization perspective. By
fixing certain behavior of the potential approximant, like
requiring the form of the approximant to automatically sat-
isfy the asymptotic behavior at x = 1 and be well behaved
at x = 0, the model function can be tuned to best represent
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the features of the inverse Langevin function. Explicitly, let
the approximant have the following characteristics

L−1 (0) = 0 , (23)

∂L−1 (x)

∂x

∣∣∣∣
x=0

= 3 , (24)

and

lim
x→1− L−1 (x) → ∞ . (25)

Accounting for the conditions described by Eq. 23
through (25), and avoiding complications manifesting from
non-uniqueness, the general forms of the [3/1] and [3/2]
Padé approximants presented by Dargazany et al. (2013)
and Jedynak (2015), respectively, can be written as

L−1

[3/1] (x, a) = x
−3 + a0x + a1x

2

x − 1
, (26)

and

L−1

[3/2] (x,b) = x
3 + b0x + b1x

2

(x − 1) (b2x − 1)
(27)

where ai and bi are constants left arbitrary.
The constant vectors a = {a0, a1} and b = {b0, b1, b2}

can be found by minimizing the relative error of the approx-
imants presented in Eqs. 26 and 27 with respect to the

exact inverse Langevin function. Formally, the minimization
objectives are

minimize
a

{
max

x∈[0,1]

∣∣∣∣∣
L−1

[3/1] (x, a)

L−1 (x)
− 1

∣∣∣∣∣
}

(28)

and

minimize
b

{
max

x∈[0,1]

∣∣∣∣∣
L−1

[3/2] (x,b)

L−1 (x)
− 1

∣∣∣∣∣
}

. (29)

There are a variety of numerical optimization algorithms
that can be used to solve problems of this type. Nonlin-
ear optimization can essentially be divided into gradient-
based and direct search methods. Gradient methods use first
and/or second derivative information to search the optimiza-
tion space for optima. Sequential quadratic programming
(SQP) is an example of a gradient-based method (Boggs
and Tolle 1995). Direct search methods do not directly
use gradient information. Differential evolution is an itera-
tive, stochastic direct search optimization algorithm that can
be applied to non-differentiable, non-continuous functions
(Storn and Price 1997). Differential evolution maintains a
population of trial solutions that are mated and evaluated at
each iteration, traversing the solution space to find optima.
The algorithm has incredible mobility with respect to solu-
tion spaces scattered with local optima (Storn and Price
1997).

Applying differential evolution, numerically imple-
mented in Mathematica (Wolfram Research, Inc., Mathe-

Fig. 4 Comparison of [3/1] and
[3/2] Padé and error-minimized
approximations of the inverse
Langevin function
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matica, Version 10.0, Champaign, IL (2014)), to (28) and
(29) yields the following approximations

L−1
[3/1] (x) = x

−3 + 2.8811x − 0.8810x2

x − 1
, (30)

and

L−1
[3/2] (x) = x

3 + x (1.1564x − 3.3522)

(0.1958x − 1) (x − 1)
. (31)

The approximants presented in Eqs. 30 and 31 represent
the particular relative error-minimized forms for the [3/1]
and [3/2] Padé approximations, respectively. Allowing the
coefficient vectors to remain arbitrary in the optimization,
the proposed minimization framework reduces the maxi-
mum relative error of the [3/1] Padé approximant from
2.639 to 0.9500 % and the error of the [3/2] Padé approx-
imant from 1.514 to 0.5554 %. The relative error of the
approximants Eqs. 30 and 31 are compared to the Cohen
(Eq. 11), Darabi (Eq. 14), and Jedynak (Eq. 13) approxima-
tions in Fig. 4.

From Fig. 4 it can be seen that the error-minimization
procedure defined in the current work distributes the relative
error admitted by a particular approximant over the entire
domain x ∈ [0, 1], producing a more consistently accurate
approximation of the inverse Langevin function compared
to approximants derived from single or multipoint Padé
approximants. This feature of the approximant can be quan-
tified by determining the average error. The average error of
an approximant may be defined as

erroravg =
∫ 1

0

∣∣∣∣∣
L−1

approx (x)

L−1 (x)
− 1

∣∣∣∣∣ dx (32)

Comparing [3/1] Padé approximants, the average errors
of the Darabi, Eq. 14, and proposed error-minimized [3/1]

approximant, Eq. 30, are 1.257 and 0.4984 %, respec-
tively. Similarly, the error-minimization procedure devel-
oped herein reduces the average error associated with
[3/2] approximants. The average errors associated with the
Cohen, Eq. 11, Jedynak, Eq. 13, and error-minimized [3/2]
approximant, Eq. 31, are 2.073, 0.5325, and 0.3538 %,
respectively.

Minimized error-corrected approximants

Using the procedure outlined by Beda and Chevalier (2003),
and applied to inverse Langevin approximations by Ngues-
song et al. (2014), it is possible to construct exceedingly
accurate and computationally efficient approximations of
the inverse Langevin function. Correcting functions act to
match the residual error of a particular approximant in an
effort to minimize the total error admitted by the new,
combined approximant.

Nguessong et al. (2014) presented a 1 step correction
to the Cohen approximation, see Eq. 22. The correction
function type, Eq. 21, can be applied in its fully general
form to further minimize the error committed by the Cohen
approximation. Nguessong et al. (2014) placed stringent
requirements on the zeros of the correcting function. This
level of specificity is not necessary, especially in the context
of error minimization of a non-invertible function like the
Langevin function.

Furthermore, a similar error correction procedure can
be applied to other approximants. Understanding the
nature of the absolute error of a particular approximant
can inform the selection of error correcting functions.
Figure 5 shows the absolute error of the Darabi, Eq. 14,
approximant.

The absolute error of the Darabi approximant acts anal-
ogously to the residual error of the Cohen approximant
following the first step improvement of Nguessong et al.

Fig. 5 Absolute error(
O (x) = L−1 (x) − L−1

approx (x)
)

committed by the Darabi
approximant



Rheol Acta (2015) 54:887–902 895

(2014). Therefore, we propose the use of a polynomial-type
correction function of the form

L−1 (x) = x
x2 − 3x + x

1 − x
+ Axα (x − γ ) (x − δ) (33)

to minimize the error admitted by the approximant.
The exact forms of the correcting functions for the Darabi

and Cohen approximations can be found using the same
optimization techniques implemented in the determination
of the error-minimized Padé approximants. Specifically, the
minimization objective functions can now be written as

minimize
A,α,γ,δ

⎧⎨
⎩ max

x∈[0,1]

∣∣∣∣∣∣
x x2−3x+x

1−x
+ Axα (x − γ ) (x − δ)

L−1 (x)
− 1

∣∣∣∣∣∣
⎫⎬
⎭ (34)

and

minimize
A,α,B,β,γ,δ

⎧⎨
⎩ max

x∈[0,1]

∣∣∣∣∣∣
x 3−x2

1−x2 + Axα + Bxβ (x − γ ) (x − δ)

L−1 (x)
− 1

∣∣∣∣∣∣
⎫⎬
⎭ .

(35)

Due to the increased complexity of the solution spaces of
Eqs. 34 and 35, a combination of optimization techniques
was necessary to converge to the global optima. Differential
evolution was used to find possible candidate solution vec-
tors within the parameter space using Mathematica. Once
possible solution vectors were identified, multiple start-
ing point local minimizations were performed using SQP
(Ugray et al. 2007) in MATLAB (MATLAB release 2014a,
The MathWorks, Inc., Natick, Massachusetts, USA). The
starting points were constructed by randomly perturbing
the candidate solution vector determined by the differential
evolution algorithm.

By performing the optimizations presented in Eqs. 34
and 35, the parameters of the error-minimized correcting

functions can be determined. The combined forms of the
correcting function approximations may be written as

L−1 (x) = x
3 − 3x + x2

1 − x

+1.73438x3.50505 (x − 0.91867) (x − 1.23956) (36)

and

L−1 (x) = x
3 − x2

1 − x2
− 0.26965x3.13129

−4.34182x8.67624 (x − 1.21532) (x − 1.23027) . (37)

The error-correcting function containing approximants
(36) and (37) are particularly accurate. Figure 6 compares
the ability of the minimized relative error approach correct-
ing function approximations to the Bergström approxima-
tion and the Nguessong et al. (2014) Cohen correction.

The proposed optimization methodology cuts the max-
imum admitted error by the corrected Cohen approximant
from 4.654 × 10−2 % (Nguessong et al. 2014) to 1.457 ×
10−2 %, representing a 68.70 % improvement with respect
to maximum relative error in the domain x ∈ [0, 1]. There
is also a reduction in the average error (determined using
Eq. 32) admitted by the error-corrected Cohen approxi-
mant from 2.061 × 10−2 % (Nguessong et al. 2014) to
8.079 × 10−3 %. Correcting functions have a similar effect
on the Darabi approximant, reducing the relative error from
2.639 % to 7.823 × 10−2 %. The average error belonging to
corrected Darabi approximant is 4.899 × 10−2 %.

A more nuanced approximant can be built through a com-
plete optimization of the solution space occupied by both
the base approximant and any correcting functions. By opti-
mizing the parameters of the approximant and the correcting
function simultaneously the relative error minimization of a

Fig. 6 Percent relative error
comparison between
error-corrected approximations
of the inverse Langevin function
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Fig. 7 Percent relative error
comparison between completely
optimized [3/1] and [3/2] Padé
approximants

particular form can be obtained. This procedure was applied
in this work to both [3/1] and [3/2] Padé approximants,
forming the optimization objectives

minimize
a,A,α,B,β,γ

{
max

x∈[0,1]

∣∣∣∣∣
L−1

[3/1] (x, a) + Axα + Bxβ (x − γ )

L−1 (x)
− 1

∣∣∣∣∣
}

(38)

and

minimize
b,A,α,B,β,γ,δ

{
max

x∈[0,1]

∣∣∣∣∣
L−1

[3/2] (x, b) + Axα + Bxβ (x − γ ) (x − δ)

L−1 (x)
− 1

∣∣∣∣∣
}

.

(39)

Combined global (differential evolution) and multiple
starting point local (SQP) optimization techniques were

applied to Eqs. 38 and 39, yielding the following error
corrected and minimized approximants

L−1 (x) = x
−3 + 2.96295x − 0.96292x2

x − 1

+0.28701x11.33414 − 1.40114x3.42076 (x − 0.78833)

(40)

and

L−1 (x) = x
(3 + (−0.631531 − 0.578498x) x)

(−1 − 0.789957x) (x − 1)
− 0.44692x4.294733

−11.08867x11.60749 (x − 1.004823) (x − 1.022831) .

(41)

Figure 7 illustrates the percent error admitted by the
approximants (40) and (41). By allowing the approximant

Fig. 8 Percent relative error of
corrected [3/2] Padé
approximations of the inverse
Langevin function
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to dynamically adapt with the correcting function the max-
imum percent error realized by the [3/1] corrected Padé
approximant drops from 7.823 × 10−2 to 2.369 × 10−2 %,
with an accompanying average error reduction from 4.899×
10−2 to 1.505 × 10−2 %. Similarly, the maximum per-
cent error of the [3/2] corrected Padé approximant decreases
from 1.457×10−2 to 4.315 ×10−3 % and the average error
from 8.079 × 10−3 to 2.436 × 10−3 %.

The effectiveness of the combined global and local opti-
mization procedure can be seen in Fig. 8. With increasing
freedom in the parameter space, the maximum and aver-
age admitted percent error of a particular approximant
decreases.

Applications of inverse Langevin approximants

Specified zeroes error-minimized approximants

The development through this point has approached approx-
imating the inverse Langevin function holistically in the
domain x ∈ [0, 1], without any consideration to the
real application of the approximant. Network-based mod-
els of rubber elasticity built from non-Gaussian descrip-
tions of chain mechanics depend on evaluating the inverse
Langevin function. The eight-chain model (Arruda and
Boyce 1993) is a three-dimensional, isotropic, hyperelastic
constitutive relationship built from a representative vol-
ume element that is composed from eight non-Gaussian
FJCs with a shared origin at the center of a cube. The
chains extend from the center to the corners of the cube.
The cube is aligned with the principal stretch directions;
therefore, no single chain is aligned with the principal
stretches.

Generally, the Cauchy stress tensor can be written as

T = Cr

√
N

λchain
L−1

(
λchain√

N

)
B − p∗1 (42)

where T is the Cauchy stress tensor, Cr is the rubbery mod-
ulus,

√
N is the locking stretch (λmax), B is the left Cauchy

Green tensor, λchain is the chain stretch (λchain = √
I1/3

= √
tr (B)/3, where I1 is the first invariant of B), p∗ is

the energy indeterminate pressure required by the boundary
conditions, and 1 is the identity tensor.

It is interesting to note that as λchain → 1 (small stretch

behavior), L−1
(
λchain/

√
N

)
→ L−1

(
1/

√
N

)
. Numer-

ically, this means that as a body begins to deform the
inverse Langevin must be evaluated in the neighborhood
around 1/

√
N . This can be problematic because generally

this point, given the particular form of the inverse Langevin
approximant, may not have zero relative error. Therefore,
at small stretches, there can be substantial, non-continuous
error in stress calculations, resulting in stress discontinu-
ities at the onset of deformation. Figure 9 illustrates how the
form of the approximation, coupled with the locking stretch
of the material, can affect the evolution of error while calcu-
lating stresses. The point stress discontinuity at the start of
deformation, as λchain diverges from unity, is clearly shown
in Fig. 9.

It is possible to account for this numerical artifact by con-
structing approximations built to have zero relative error at
x = 1/

√
N . Instead of the function requirements specified

in Eq. 23 through (25), now, let the approximant be con-
strained to exactly satisfy the inverse Langevin function at
x = 0, 1/

√
N , and 1. Figure 10 demonstrates the capac-

ity of the relative error-minimizing technique to maintain

Fig. 9 Percent relative error of
stress in the direction of applied
stretch during uniaxial extension
of an isotropic, FJC eight-chain
material model, Cr = 1 MPa
and

√
N = 2
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Fig. 10 Percent relative error of
[3/2] Padé approximants with
specified zeroes determined
using differential evolution
optimization

domain-wide error control while simultaneously achieving
the required small stretch accuracy.

For example, let
√

N = λmax = 2. The error-minimizing
optimization objective for determining the specific form of
a [3/2] Padé approximant takes the form

minimize
b

⎧⎨
⎩ max

x∈[0,1]

∣∣∣∣∣∣
1.796756x−0.898378b2x+b1

(
x3−0.25x

)+b0(x(x−0.5))

(x−1)(b2x−1)

L−1 (x)
− 1

∣∣∣∣∣∣

⎫⎬
⎭ .

(43)

Solving Eq. 43 the inverse Langevin approximation
becomes

L−1 (x) = x
2.99997 + x (−3.41905 + 1.18535x)

(x − 1) (0.233723x − 1)
. (44)

The new approximant, shown in Eq. 44, fundamentally
changes the relative error associated with calculating the

stress-strain response of materials with constitutive behav-
ior dependent on the inverse Langevin function by removing
the point discontinuity at small stretches. In Fig. 11, the
relative stress-strain error of [3/2] Padé approximants are
shown for uniaxial extension of an isotropic, FJC eight-
chain material. Controlling the location of zero error in
the domain x ∈ [0, 1] leads to highly accurate descrip-
tions of stress at the initiation of deformation, with lit-
tle compromise with respect to error elsewhere in the
domain.

Truncated domain error-minimized approximants

The error-minimization framework for determining the spe-
cific form of an inverse Langevin approximant proposed
in this work can be extended to construct tailored func-
tions optimized for a particular application by appreciating

Fig. 11 Percent relative error
comparison of uniaxial stresses
evaluated with Cohen, Jedynak,
and specified zero
error-optimized approximants of
the inverse Langevin function
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Fig. 12 Percent relative error of
approximations with domains
x ∈ [1/λmax, 1]. Solid lines and
dashed lines correspond to
percent relative error for
approximants in their defined
domains x ∈ [1/λmax, 1] and
undefined domains
x ∈ [0, 1/λmax ), respectively.
Approximants were determined
using differential evolution

the actual evaluation domain of the inverse Langevin func-
tion. Often the argument of a process that requires the
computation of the inverse Langevin function occupies a
finite region x ∈ [a, b] with a > 0 and b < 1. For
example, the argument evaluated by the inverse Langevin
function in Eq. 42, λchain/

√
N , is constrained to the domain

λchain/
√

N ∈
[
1/

√
N, 1

]
.

By limiting the optimization domain within the proposed
error-minimization framework, it is possible to further
refine inverse Langevin approximants without any addi-
tional complexity to the form of the function. The general
[3/2] approximant can be reformulated by imposing con-
strains on the behavior at the boundaries of the domain at
x = 1/

√
N and x = 1 similar to the conditions for the

unconstrained domain approximant (Eq. 23 through (25)).
Maintaining the constraint presented in Eq. 25 and requir-
ing the value of the approximant and its derivative to be

exactly satisfied at x = 1/
√

N , the [3/2] Padé approximant

optimized for the domain x ∈
[
1/

√
N, 1

]
can be written as

L−1

[3/2] (x, b, N) = 1

N3/2 (x − 1) (b2x − 1)

{
−√

N (b2 + N (x − 1)

+b2

(
N − 2

√
N

)
x
)
L−1

(
1/

√
N

)
+

(√
Nx − 1

)
((√

Nx − 1
) (

2b1 + b0
√

N + b1
√

Nx
)

+
(
b2 − (1 + b2)

√
N + N

) ∂L−1 (x)

∂x

∣∣∣∣∣
x=1/

√
N

⎞
⎠

⎫⎬
⎭ (45)

where L−1
(

1/
√

N
)

and ∂L−1

∂x

∣∣∣
x=1/

√
N

are the exact val-

ues of the inverse Langevin function and its derivative at
x = 1/

√
N , respectively. This form holds ∀N ∈ (1, ∞),

with the general form of the [3/2] Padé approximant for
the inverse Langevin function, Eq. 45, reducing in the

Fig. 13 Percent relative error
comparison of uniaxial stresses
evaluated with various
approximants of the inverse
Langevin function
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limit as N → ∞ to whole domain, x ∈ [0, 1], approximant,
Eq. 27.

Using the general form for the [3/2] Padé approxi-
mant, Eq. 45, it is possible to construct a new optimization
objective using the proposed error-minimization method

presented in this work for the domain x ∈
[
1/

√
N, 1

]
=

[1/λmax, 1] as

minimize
b

⎧⎨
⎩ max

x∈
[
1/

√
N,1

]
∣∣∣∣∣
L−1

[3/2] (x,b, N)

L−1 (x)
− 1

∣∣∣∣∣
⎫⎬
⎭ . (46)

Note that the optimization problem presented in Eq. 46
is a function the number of chain links, N . Equation 46
can be solved using any of the optimization techniques dis-
cussed herein. Figure 12 shows the relative error of [3/2]

approximants with various locking stretches compared with
the whole domain approximant, Eq. 31.

Intelligently selecting and optimizing over a discrete
domain reduces the maximum and average relative errors of
[3/2] Padé approximants. The increase in accuracy within
the reduced domain is achieved by pushing the error com-
mitted by the approximant into the domain where the
function is undefined (this phenomenon can be observed in
Fig. 12 as the solid lines transition to dashed lines and the
error functions become unbounded).

Truncated domain approximants built using the pro-
posed error-minimization technique—solving the optimiza-
tion problem presented in Eq. 46 for specific values of
N—are capable of producing increasingly accurate approx-
imations of the inverse Langevin function, given the appli-
cation does not require determining the inverse Langevin
of an argument outside the domain used to construct the

Fig. 14 a–c Error-minimized [3/2] Padé approximant coefficient b0,
b1, b2 (points) as a function of the number of chain links, N , respec-
tively. Equations (47) through (49) are plotted solid for N ≥ 50
and dashed for N < 50 in (a), (b), and (c), respectively. The
error-minimized coefficients, and divergence of Eq. 47 through (49)
from their respective error-minimized coefficients, at small locking

stretches are also presented in the subplots of (a), (b), and (c),
respectively. d Maximum relative error of discrete domain [3/2] Padé
approximants constructed from error-minimized coefficients (points)
and approximant coefficients (dashed line)—approximant coefficients
determined by Eq. 47 through (49)—compared to the maximum
relative error of Eq. 31 (dot dashed line)
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particular form of the approximant. Figure 13 depicts the
relative percent error of the stress-strain relationships—in
uniaxial extension—of [3/2] Padé approximants (Cohen,
Eq. 11; Jedynak, Eq. 13; error minimized for the domain x ∈
[0, 1], Eq. 31; error minimized for the domain x ∈ [0, 1]
fixed with zero relative error at x = 1/λmax, Eq. 44; error
minimized for the domain x ∈ [1/λmax, 1]) for λmax = 2.

The optimization problem presented in Eq. 46 can be
used to determine the relationship between coefficients of
[3/2] Padé approximants, b = {b0, b1, b2}, and the number
of chain links, N . We found that for large locking stretches,
the error-minimized Padé coefficients were well behaved
and capable of being defined through a power law. The
relationships between the coefficients and the number of
chain links were determined using a nonlinear least squares
regression for N > 50. Explicitly, the large locking stretch
coefficient relationships were calculated as

b0 (N) = −3.300 − 1.999

N0.3184
, N ≥ 50 , (47)

b1 (N) = 1.128 + 1.172

N0.3224
, N ≥ 50 , (48)

and

b2 (N) = 0.1810 + 1.442

N0.3820
, N ≥ 50 . (49)

Equations 47 through (49) have adjusted R2, coefficient
of determination, values of 1.0000, 1.0000, and 0.99999,
respectively.

An exhaustive description of the relationships between
the coefficients of error-minimized, discrete domain [3/2]
Padé approximants, b = {b0, b1, b2}, and the number of
chain links, N , are presented in Fig. 14a–d. The Padé coef-
ficients were found by solving Eq. 46 for a particular N

using differential evolution; the maximum associated rel-
ative error was also determined. As the locking stretch
increases the Padé coefficients tend toward their corre-
sponding values in Eq. 31; the maximum relative error,
predictably, has similar behavior.

It is clear for small values of N , N < 50, there is sig-
nificant deviation from the optimal Padé coefficients while
using the relationships presented in Eq. 47 through (49),
leading to increasingly lower accuracy approximants of the
inverse Langevin with decreasing N . This trend is exactly
opposite to the maximum error behavior using the opti-
mal coefficients (see the divergence of the dashed line from
the data points in Fig. 14d for small N). It is also impor-
tant to note that though the maximum relative error of the
approximant built using Padé coefficient functions (Eq. 47
through (49)) is greater than that of the optimal Padé coeffi-
cients, due to the form of the inverse Langevin approximant,
Eq. 45, the behavior at the boundaries of the domain are
automatically satisfied.

For applications with large locking stretches, N ≥ 50,
it is possible to combine the approximant Padé coefficient
functions, Eq. 47 through (49), with the general form of
the [3/2] Padé approximant for the inverse Langevin func-
tion, Eq. 45, to simplify the optimization problem shown in
Eq. 46. The coefficient functions reduce the complexity of
finding a particular inverse Langevin approximant from an
optimization problem to simply determining the exact value
of the inverse Langevin and its derivation at a single point.

Conclusions

An error-minimization approach for determining inverse
approximants of non-invertible functions has been devel-
oped using a combined gradient-based and direct search
optimization procedure. The technique has been shown
to reduce the relative and average errors admitted by
approximants by distributing the committed error over the
entire function domain. Padé approximants of the inverse
Langevin function were reformulated in this framework to
determine their error-minimized form. This method pro-
duces approximants with increased accuracy, with relatively
no computational tradeoff. The method was extended to
more complex approximant forms, including power and
polynomial error correcting functions. All the approximants
produced by this technique are readily evaluated, differen-
tiated, and integrated, and their implementation in existing
computational methods—like finite element methods—is
straightforward.

Often the application of the inverse Langevin approxi-
mant can be used to inform its construction. Using network-
based models of rubber elasticity assembled with non-
Gaussian chain descriptions (specifically, the eight-chain
model developed by Arruda and Boyce (1993)) as a proto-
typical example, the error-minimizing framework was also
used to build optimized approximants with specified mid-
domain behavior and reduced domains. In the context of the
eight-chain model, approximations of the inverse Langevin
function can admit non-continuous error at small stretches.
This phenomenon leads to stress discontinuities at the
start of deformation. Stress discontinuities can be removed
by explicitly requiring the form of the inverse Langevin
approximant to have zero error at small stretches. Addi-
tionally, in certain applications, the accuracy of a particular
approximant can be improved by understanding the func-
tion’s evaluation domain. We have shown that for a domain
x ∈ [a, 1] , for 0 ≤ a ≤ 1, a common evaluation domain
of constitutive models of rubber elasticity, it is possible
to construct a general form of the [3/2] Padé approximant
that can be used in the proposed error-minimizing frame-
work to determine the particular, error-minimized, trun-
cated domain inverse Langevin approximant. The truncated
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domain approach simultaneously reduces the maximum and
average relative error admitted by the approximant, com-
pared to the equivalent whole domain approximant, while
eliminating stress discontinuities at the onset of deforma-
tion.
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